Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis
نویسندگان
چکیده
In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent imitate teachers in diagnosing students characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further user to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers knowledge: when teachers reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of students learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments.
منابع مشابه
A Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
متن کاملHierarchical Functional Concepts for Knowledge Transfer among Reinforcement Learning Agents
This article introduces the notions of functional space and concept as a way of knowledge representation and abstraction for Reinforcement Learning agents. These definitions are used as a tool of knowledge transfer among agents. The agents are assumed to be heterogeneous; they have different state spaces but share a same dynamic, reward and action space. In other words, the agents are assumed t...
متن کاملA Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
متن کاملDesign and Implementation of a Fuzzy Intelligent System for Predicting Mortality in Trauma Patients in the Intensive Care Unit
Introduction: The intensive care unit is one of the most costly parts of the national health sector. These costs are largely attributable to the length of stay in the intensive care unit. For this reason, there are significant benefits in predicting patients' length of stay and the percentage of deaths in intensive care units. Therefore, in this study, a fuzzy logic based intelligent system was...
متن کاملDesign and Implementation of a Fuzzy Intelligent System for Predicting Mortality in Trauma Patients in the Intensive Care Unit
Introduction: The intensive care unit is one of the most costly parts of the national health sector. These costs are largely attributable to the length of stay in the intensive care unit. For this reason, there are significant benefits in predicting patients' length of stay and the percentage of deaths in intensive care units. Therefore, in this study, a fuzzy logic based intelligent system was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Inf. Sci.
دوره 170 شماره
صفحات -
تاریخ انتشار 2005